Fluid and Electrolyte Survey

Dr. Thomas VanderLaan
Dr. Melanie Walker
Huntington Memorial Hospital
Pasadena, California
Anatomy of Body Fluid Compartments

- Total body water
 - 50 to 70% of total body weight
 - Varies with age, sex and fat content
Functional Compartments of Body Fluids

Percent Body Weight

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (cc)</th>
<th>% Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Extracellular Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>3,500</td>
<td>5%</td>
</tr>
<tr>
<td>Interstitial Fluid</td>
<td>10,500</td>
<td>15%</td>
</tr>
<tr>
<td>Total Intracellular Volume</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>Intracellular Volume</td>
<td>28,000</td>
<td></td>
</tr>
<tr>
<td>Total Body Water</td>
<td>42,000</td>
<td>60%</td>
</tr>
</tbody>
</table>

70 kg male
Chemical Composition of Body Fluid Compartments

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>Interstitial Fluid</th>
<th>Intracellular Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺</td>
<td>142 mEq/L</td>
<td>153 mEq/L</td>
<td>153 mEq/L</td>
</tr>
<tr>
<td>K⁺</td>
<td>4 mEq/L</td>
<td>4 mEq/L</td>
<td>150 mEq/L</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>5 mEq/L</td>
<td>3 mEq/L</td>
<td>40 mEq/L</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>3 mEq/L</td>
<td>2 mEq/L</td>
<td>10 mEq/L</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td>103 mEq/L</td>
<td>114 mEq/L</td>
<td>150 mEq/L</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>27 mEq/L</td>
<td>30 mEq/L</td>
<td>10 mEq/L</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>150 mEq/L</td>
<td>10 mEq/L</td>
<td>5 mEq/L</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>40 mEq/L</td>
<td>40 mEq/L</td>
<td>10 mEq/L</td>
</tr>
<tr>
<td>Organic acids</td>
<td>5 mEq/L</td>
<td>5 mEq/L</td>
<td>5 mEq/L</td>
</tr>
<tr>
<td>Protein</td>
<td>16 mEq/L</td>
<td>1 mEq/L</td>
<td>40 mEq/L</td>
</tr>
</tbody>
</table>

Note: The values represent typical concentrations in mEq/L. The table shows the distribution of major cations and anions in different body fluid compartments.
Volume Deficit

Most common volume disorder in surgical patients

<table>
<thead>
<tr>
<th>Measurable Causes</th>
<th>Non-measurable Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood loss</td>
<td>Third spacing / fluid</td>
</tr>
<tr>
<td>sequestration</td>
<td>Traumatized tissues</td>
</tr>
<tr>
<td>Gastrointestinal loss</td>
<td>Inflammatory processes</td>
</tr>
<tr>
<td></td>
<td>Intestinal obstruction</td>
</tr>
<tr>
<td></td>
<td>Burns</td>
</tr>
<tr>
<td>SYMPTOMS</td>
<td>MODERATE</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>Sleepiness, Apathy, Slow response, Anorexia</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Decrease in food consumption</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Tachycardia, Collapsed veins, Collapsing pulse, Orthostatic hypotension</td>
</tr>
<tr>
<td>Tissue signs</td>
<td>Soft small tongue, Decreased turgor</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Temperature decrease, mild</td>
</tr>
<tr>
<td>Renal</td>
<td>Oliguria</td>
</tr>
</tbody>
</table>
Oliguria: Definitions

- Prerenal and how to tell
- Renal and how to tell
- Oliguria vs. Anuria
Oliguria: Things to Monitor

Urine osmolality
Urine sodium
BUN / serum creatinine
Urine and plasma urea
Urine and plasma creatinine
Oliguria: Things to Monitor

- Urine osmolality
- Urine sodium
- BUN / serum creatinine
- Urine and plasma urea
- Urine and plasma creatinine
Fractional excretion of sodium

Can tell you if the kidney is functioning properly…

\[\text{FENa} = \frac{\text{Urine}}{\text{Plasma Na}} \times 100 \]

\[\text{Urine} / \text{Plasma Creatinine} \]
Treatment of Volume Deficits

1. Estimate the deficit

Maintenance:
- 1^{st} 10 kg body weight \rightarrow 100 cc / kg / day
- 2^{nd} 10 kg body weight \rightarrow 50 cc / kg / day
- > 20 kg body weight \rightarrow 20 cc / kg / day

Measurable losses
- Blood loss, GI loss
- Insensible losses
Treatment of Volume Deficits

2. Replace Volume Intravenously
 Crystalloid
 Colloid
 Blood
Treatment of Volume Deficits

3. Assess results
 - Vital signs
 - Urine Output
 - Central venous pressure
 - Swan-Ganz measurements
Electrolyte Content of Fluids

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>CATIONS</th>
<th>ANIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na⁺</td>
<td>K⁺</td>
</tr>
<tr>
<td>Extracellular fluid</td>
<td>142</td>
<td>4</td>
</tr>
<tr>
<td>Lactated Ringer’s</td>
<td>130</td>
<td>4</td>
</tr>
<tr>
<td>0.9% NaCl</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>M/6 Sodium lactate</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>M Sodium lactate</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>3% NaCl</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>5% NaCl</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>0.9% Ammonium Cl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using different fluids

- Advantages and Disadvantages of:
 - Lactated Ringer’s
 - NS
 - Hypertonic Solution
 - Hypotonic solution
Volume excess

- Most common in the elderly and patients with heart disease
- Often iatrogenic from over-resuscitation
- Acute renal failure can be a cause
Symptoms of Volume Excess

- Nervous System
 - Rarely symptoms

- Gastrointestinal
 - At operation, edema of stomach, colon, omentum and small bowel mesentery
Cardiovascular Symptoms of Volume Excess

- **Moderate**
 - ↑ venous pressure
 - Distension of veins
 - ↑ cardiac output
 - Murmurs
 - ↑ pulse pressure

- **Severe**
 - Pulmonary edema
Tissue Symptoms of Volume Excess

- Moderate
 - Pitting edema
 - Basilar rales

- Severe
 - Anasarca
 - Vomiting
 - Diarrhea
 - Rales
Symptoms of Volume Excess

- Metabolic
 - None

- Renal
 - Moderate: None
 - Severe: None
Treatment of Volume Excess

- Decrease fluid intake
- Diuretics
- Inotropic agents
- Vasodilators
- Hemodialysis
Concentration Abnormalities

- Serum Sodium and Osmolality
- Cell membrane permeability
Sodium

- Plays a major role in water balance and muscle contraction
- Draws water through permeable membranes in the body thereby distributing fluid throughout the body
Hyponatremia

- Causes
 - Almost always due to free water
 - Often iatrogenic (fluid replacement)
 - Oliguria
 - Endogenous water release (cell catabolism)
 - Intracellular shifts (sepsis)
 - SIADH
Central Nervous System Signs of Hyponatremia

- **Moderate**
 - Muscle twitching
 - ↑ tendon reflexes
 - ↑ intracranial pressure

- **Severe**
 - Convulsions
 - Loss of reflexes
 - ↑ intracranial pressure
Signs and Symptoms of Hyponatremia

- **Cardiovascular**
 - Changes in blood pressure and pulse related to ↑ ICP

- **Tissues**
 - Increased salivation
 - Diarrhea

- **Renal**
 - Oliguria progressing to anuria
Treatment of Hyponatremia

- Calculate sodium deficit
 - Total body weight \times (140 mEq – Serum Na)
- Replace slowly
 - < 12 mEq / L / 24 hours
 - Dangers of central pontine myelinosis
- Isotonic vs. Hypertonic solutions
Causes of Hypernatremia

- Excessive extrarenal water loss
 - Fever
 - Tracheostomy
 - Burns
Causes of Hypernatremia

- Renal water loss
 - High output renal failure
 - Diabetes insipidus
Causes of Hypernatremia

☐ Solute loading
 ■ ↑ protein intake
 ■ Osmotic diuretics
CNS Signs of Hypernatremia

- Moderate
 - Restlessness
 - weakness

- Severe
 - Delirium
 - Maniacal behavior
<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th>Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia</td>
<td>Decreased saliva and tears</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Dry mucous membranes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renal</th>
<th>Swollen tongue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oliguria</td>
<td>Swollen tongue</td>
</tr>
<tr>
<td>Fever</td>
<td>Flushed skin</td>
</tr>
</tbody>
</table>
Treatment of Hypernatremia

- Calculate free water deficit
 \[0.6 \times \text{Total body weight} - 140 \times (0.6 \times \text{TBW}) / \text{Na} \]

- Replace free water
 - Balanced salt solution to prevent CNS symptoms
Potassium

- Normal dietary intake = 50 - 100 mEq / day
- Most is excreted in urine
- Important for cardiac and neuromuscular function
Hyperkalemia

- **Causes:**
 - Usually acute renal failure
 - Stress
 - Catabolism
 - Acidosis

- **Symptoms**
 - GI:
 - Nausea / vomiting
 - Diarrhea
 - CV:
 - Rhythm abnormalities
 - Heart block
 - Cardiac arrest
Hyperkalemia: Treatment

- Withhold exogenous potassium
- Calcium gluconate
 - Can suppress myocardial effects
- Sodium bicarbonate, insulin and D10W
 - Helps transfer K intracellular
- Dialysis
- Cation exchange resins
Hypokalemia: Causes

- More common in surgical patients
 - Prolonged use of IV solutions with K+
- Alkalosis
- Sodium loading
Hypokalemia: Symptoms and Signs

- Failure of muscle contractility
 - Cardiac, skeletal and smooth muscle
- Weakness
- Tendon reflexes
- Ileus
- EKG changes
Hypokalemia: Treatment

- Prevention
 - Replace renal and GI losses of K+ in IV solution
- Avoid cardiac toxicities
 - $\leq 40 \text{ mEq KCl / liter IV fluid}$
 - $< 20 \text{ mEq KCl / hour replacement}$
Calcium

- Critical for:
 - normal cell function
 - neural transmission, cell membrane stability
 - bone structure
 - blood coagulation

- Daily losses in feces, urine and through skin

- Daily exchange in bones, GI tract, kidneys
Hypocalcemia: Causes

- Chronic renal failure
- Multiple transfusions
- Pancreatitis
- Nutritional deficiency (esp. Vitamin D)
- Magnesium depletion
- Drugs
- Thyroidectomy / Parathyroidectomy
Management of Hypocalcemia

Calcium < 8.0-8.5 mg/dl

SYMPTOMATIC

- **SEVERE SYMPTOMS:** tetany
 - 20 ml IV 10% Calcium gluconate over 20 minutes
 - then 15 mg/kg Calcium gluconate every six hours
 - reassure patient to minimize respiratory alkalosis from hyperventilation
Management of Hypocalcemia

- MILD SYMPTOMS: paresthesias
 - Oral Calcium treatment
Management of Hypocalcemia

- SEEK CAUSE
 - consider magnesium deficiency
 - exclude hypoalbuminemia
 - measure serum phosphate (see next slide)
 - could be excess hydration
Phosphate and Hypocalcemia

- High serum phosphate
 - Suspect hypoparathyroidism

- Low or normal serum phosphate
 - Suspect bone disease
Hypercalcemia: Symptoms

- bone defects
- cardiac changes
- shock
- renal hypertension and failure
Hypercalcemia: Causes

- **1° hyperparathyroidism**
- **Malignancy**
 - With or without bone metastasis
- **Drugs**
 - Some diuretics
 - Vitamins A or D
 - Calcium carbonate
- **Metabolic disorders**
 - Osteoporosis
 - Thyrotoxicosis
 - Renal tubular acidosis
- **Pheochromocytoma** (rare)
Management of Hypercalcemia

UNSTABLE PATIENT

> 14 mg/dl

- Rehydrate with normal saline
- Check serum phosphate
- Give furosemide 40 mg intially then 40-80 mg q. 2 hr
 - Monitor serum electrolytes
- If patient remains unstable
 - Calcitonin 4 IU/kg subcutaneous or IM q 12°
 - Dialysis might be necessary
Management of Hypercalcemia

STABLE PATIENT

- Low serum phosphate
 - Usually 1° hyperparathyroidism, can give oral phosphate

- Normal or high serum phosphate
 - Suspect malignancy
Magnesium

- Essential for function of most enzyme systems
- Half of total magnesium is stored in bone
- Kidneys can conserve and excrete
Magnesium Deficiency: Causes

- Starvation
- Malabsorption
- GI loss
- Pancreatitis
- Alcoholism
- Diabetic ketoacidosis
- 1° aldosteronism
Magnesium Deficiency: Signs and Symptoms

Similar to hypocalcemia

- Weakness
- Vertigo
- Dysphagia
- Seizures
- Tetany
- Delerium
- ↑ deep tendon reflexes
Treatment of Hypomagnesemia

- Correct over-hydration
- If **severe and symptomatic**:
 - Give 4-8 ml of a 50% MgSO4 solution in 100-200 ml of D5W IV over 15 minutes
- Look for causes
- Oral supplements for stable patients
Magnesium Excess

- Rare
- Associated with:
 - Acute renal failure
 - Antacids
 - Massive trauma
 - Burns
Magnesium Excess: Signs and Symptoms

- Lethargy
- Weakness
- ↓ deep tendon reflexes
- EKG abnormalities
Treatment of Hypermagnesemia

- Withhold exogenous magnesium
- Correct acidosis
- Dialysis may be necessary
- For the symptomatic patient
 - Calcium Gluconate 10% 1-10 ml IV