

Acute Renal Failure

Karen L.Herbst MD PhD University of Washington

Functional Classification of Acute Renal Failure (ARF)

- Hemodynamic ARF (≈30%)
- Parenchymal ARF (65%)
 - Acute tubular necrosis (55%)
 - Acute glomerulonephritis (≈5%)
 - Vasculopathy (3%)
 - Acute interstitial nephritis (≈2%)
- Obstruction (≈5%)

Differentiating ARF vs. Chronic Renal Failure (CRF)

- 1) History
- 2) Oliguria = ARF; acute CRF decompensation
- 3) Renal ultrasound
 - Normal or large = acute
 - CRF small (unless PKD, diabetes, amyloid)
- 4) ARF =Unstable azotemia (↑ or ↓ over days)
- 5) Anemia unreliable for ARF vs. CRF
- 6) ↑PO4, ↑K+, metabolic acidosis, ↑uric acid little diagnostic value
- 7) Urinalysis no value unless normal suggesting pre-renal azotemia

Pre-Renal Azotemia

Definition:

A reduction in glomerular filtration rate (GFR) due to a ↓ glomerular capillary pressure

Diagnosis:

Characteristic clinical setting and urinary findings

Response to the correction of the presumptive pre-renal state

Pre-Renal Azotemia: Causes

- ↓ cardiac output
 - CHF
 - Intravascular volume depletion
- 2) Normal Cardiac Output

 - ACE (-) in patients with pre-existent renal vascular disease
 - Hepatorenal syndrome
- 3) ↑ cardiac output
 - Hepatorenal syndrome
 - Sepsis syndrome

Pre-Renal Azotemia: Renal Manifestations

- Na+ avidity
- 2) Relatively normal urinalysis
- 3) Relatively normal serum bicarbonate
- 4) High BUN/creatinine ratio (not always)
- High urine osmolality (typically >600 mosm/kg)

Pre-Renal Azotemia: Confounding Diagnostic Variables

- 1) A low urine Na+ is not unique Found in:
 - Non-oliguric ATN, especially contrast-induced
 - Early urinary tract obstruction
 - Acute glomerulonephritis
- 2) Diuretic use can obfuscate the urine Na+ and urine osmolality
- 3) Jaundice muddy brown granular casts
- 4) Poor dietary intake lowers the BUN/Cr ratio

Hepatorenal Syndrome (HRS)

<u>Definition</u>: "Irreversible" pre-renal azotemia in the setting of end-stage hepatic disease

Pathogenesis:

- Unrelenting renal vasoconstriction induced by unknown mediators
- Renin/angiotensis, endothelin, NO, prostanoids, endotoxin, †sympathetic tone all implicated; none proven and may reflect secondary phenomena

HRS: Differential Diagnosis

- Rule out volume depletion by volume challenge
- 2) Rule out combined hepatic and renal epithelial injury
- 3) Rule out ATN (which is common in the HRS patients)

HRS: Therapy

- Portal-systemic shunts: acute, but not longterm benefits
- 2) Paracentesis: no proven benefit; may precipitate ARF
- 3) Vasodilator therapy: no proven benefit
- 4) Dialysis:
 - IF a possibility of hepatic functional recovery
 - IF there is a likelihood of ATN (high urine Na+; urine sediment not helpful)
- 5) Hepatic transplantation

Obstructive Nephropathy

- 1) Incidence: ≈ 5-10% ARF cases
- 2) Causes: in part segregates according to age:
 - Children: anatomic (urethral valves, ureteral-vesicle or ureteral-pelvic stenoses)
 - Young adults: stones; retroperitoneal processes (tumor, infections)
 - <u>Elderly</u>: GU tumors (bladder, cervical);
 BPH

Obstructive Nephropathy

- 3) Pathogenesis:
- Acute ↑ in intraluminal pressure
- 2° renal vasoconstriction (TXAII)
- "Disuse atrophy"
- Inflammatory cell mediated tubulointerstitial injury
- 4) Symptoms:
 - Pain (> common if acute; ↑ with solute load
 - Abnormal urine flow absolute anuria (R/O acute GN, cortical necrosis), oliguria, or nonoliguria
 - Hematuria

Urinary Tract Obstruction Diagnosis

History: most often suggests the diagnosis

- 1) Urinalysis
 - RBCs, minimal proteinuria, pyuria, bacteriuria
 - Urine Na+: low (early); high (late)
- 2) Foley catheter (excludes only bladder outlet obstruction

Urinary Tract Obstruction Diagnosis

- 3) Renal Ultrasound (95% accurate)
- Possible false negatives:
 - Early obstruction (<48 hours)
 - Retroperitoneal fibrosis (prevents calcyeal dilation)
 - Concomitant acute tubular necrosis
- Possible false positives:
 - Vesicoureteral reflux
 - Long-standing, physiologically insignificant urinary obstruction

Urinary Tract Obstruction Diagnosis

- 4) Renal CT:
 - Obtain if high index of suspicion with dubious ultrasound
 - Can help localize the site of obstruction
- 5) Retrograde pyelogram:

The gold standard: diagnostic and often leads to immediate therapy (i.e., stints)

Urinary Tract Obstruction: Treatment and Prognosis

- 1) Drainage
 - Foley catheter
 - Retrograde pyelography/stints
 - Percutaneous nephrostomy
- 2) Treat Underlying Disease
- 3) Prognosis depends on:
 - Chronicity (relatively good if < 1 week; little if > 12 weeks; but highly variable)
 - Coincidental diseases (e.g., UTI)
- 4) Rate of recovery
 - Much within 48-72 hours
 - Most within 2 weeks

Acute Glomerulonephritis (GN) / Glomerulopathy

- 1) Incidence: ≈5-10% of cases of ARF
- 2) Setting:
- Idiopathic
- Post-infectious
- Collagen vascular disease
- Flair of chronic GN (e.g., IgA nephropathy)

Acute GN

- 3) Pathogenesis
 - Direct interference with glomerular capillary function
 - Altered tubular function
 - Protein cast formation
 - Tubular injury 2° glomerular bleeding
 - Potential hemodynamic component to the ARF (diuretics, NSAIDs, ACE inhibitors)
 - "Nephrosarca": ARF in minimal change disease

Acute GN

- 4) Diagnosis:
 - RBC casts (not always)
 - Heavy proteinuria (not always, e.g. lgA nephropathy)
 - Lack of other compelling diagnoses
 - Renal biopsy

Vasculopathy: Unexplained MULTISYSTEM Disease

1) Causes:

- Thrombotic microangiopathy (HUS/TTP)
 - Idiopathic HUS/TTP
 - Collagen vascular disease (e.g., SLE)
 - Chemotherapy/radiation therapy (particularly bone marrow transplants)
 - Cyclosporine: renal transplant rejection
 - Infectious (E.coli, Shigella enterocolitis, HIV)
- Polyarteritis nodosa
- Atheroembolic renal disease

Vasculopathy: Unexplained MULTISYSTEM Disease

- 1) Diagnosis:
 - HUS/TTP:
 - Schistocytes on peripheral smear
 - Absent/low haptoglobin
 - High LDH
 - ± low platelets
 - Polyarteritis: arteriography, biopsy
 [U/A in both may show hematuria, RBC casts, proteinuria]
 - Atheroemboli: characteristic clinical presentation

Atheroembolic Renal Disease

- 1) Setting: Diffuse, erosive atherosclerosis
- 2) Triggers:
 - Aortic manipulation (angiography, surgery, blunt trauma)
 - Anticoagulation (prevents healing of ulcerative plaques)
- 3) Pathogenesis
 - Microscopic atheromatous plaques shower renal vasculature
 - Incites progressive obliterative arteropathy (intimal proliferation, giant cells, eosinophils)

Atheroembolic Renal Disease

- 4) Renal manifestations (early, can mimic contrast-induced ATN)
 - Acute renal failure
 - Mild acute renal dysfunction→ ESRD over weeks/months
 - U/A: ± RBCs, mild proteinuria, occ. eosinophils
- 5) Systemic Manifestations:
 - Livedo reticularis; cutaneous infarcts
 - Multiorgan injury (eyes, mesentary, etc.)
 - Hypocomplementemia
 - eosinophilia

Atheroembolic Renal Disease

- 6) Diagnosis:
 - Clinical presentation usually sufficient
 - Renal biopsy:75% yield diagnosis
 - Biopsy involved skin
- 7) Treament:
 - Supportive only

Acute Interstitial Nephritis Causes

- Allergic (drugs)
- 2) Infectious
 - Bacterial (Legionella, leptospirosis, scarlet fever, diphtheria)
 - Viral (CMV, hantavirus, infectious mononucleosis, measles, HIV)
 - Protozoan (toxoplasmosis)
- 3) Autoimmune
 - Sarcoidosis, SLE, Sjogren's syndrome, idiopathic
- Toxins Chinese herb nephropathy
- 5) Infiltrative leukemia, lymphoma

Acute Interstitial Nephritis Clinical Presentation

- Incremental azotemia (ARF) temporally related to offending agent (drug, infection, toxin exposure)
- Pever: Allergic and infection-related cases
- 3) Rash (Allergic: selected infectious and autoimmune cases)
- 4) Eosinophilic (Allergic)

Acute Interstitial Nephritis Clinical Presentation

- 5) Urinalysis
 - Leukocytes/WBC casts
 - Eosinophiluria (allergic)
 - Hematuria (micro or gross)
 - Minimal/mild proteinuria (rarely nephrotic range, except with NSAIDs)
- 6) + Gallium scan

Causes of Drug-Induced AIN

- 1) NSAIDs (all classes, cross reactions possible)
- 2) Antibiotics
 - Penicillins
 - Methicillin (1-20% patients)
 - Ampicillin, amoxicillin, carbenicillin, etc.
 - Cephalosporins cephalothin, cephalexin, cefoxitin (cross reactions possible, rare)

Causes of Drug-Induced AIN

- Quinolones (ciprofloxacin)
- Anti-tuberculous agents rifampin, INH, ethambutol
- Sulfonamides: antibiotics (Bactrim); diuretics (furosemide, thiazides)
- Miscellaneous: over 200 drugs implicated; most not proven
 - Allopurinol, cimetidine, dilantin (proven)

NSAID-Associated Interstitial Nephritis

- Onset: Days to months after initiating therapy
- 2) Presentation:
 - Heavy proteinuria/nephrotic syndrome (85% ARF cases)
 - ARF without heavy proteinuria
 - Fever, rash, eosinophilia uncommon

NSAID-Associated Interstitial Nephritis

3) Diagnosis:

- Characteristic presentation
- Consider other NSAID associated renal syndromes (hemodynamic and ischemic ARF)
- Consider trial of drug withdrawal prior to biopsy
- Biopsy
 - Interstitial edema, infiltration with lympocytes, rarely granulomas
 - Negative immunofluorescence
 - Foci of ATN

NSAID-Associated Interstitial Nephritis

- 4) Treatment:
 - Stop agents
 - ?? Benefit of steroids
- 5) Prognosis:
 - Generally reversible after weeks (up to a year)
 - May cause chronic renal insufficiency/ESRD (unlike NSAIDinduced hemodynamic ARF)

Urinary Eosinophils: Diagnostic Utility

- 1) Suggestive of allergic interstitial nephritis
- 2) False Negatives
 - NSAID associated AIN
 - Use of Wright stain, not Hansel stain
- 3) False Positives
 - UTI, especially prostatitis
 - RPGN RBCs, heavy proteinuria
 - Atheroembolic renal disease
- 4) Significance
 - 1-5% considered positive
 - Consistent with but not diagnostic of AIN
 - Interpret in context of clinical setting

Acute InterstitialNephritis Treatment

- Treat underlying disease
 - Infections
 - Withdraw offending agent
- 2) Trial of corticosteroids, particularly for allergic interstitial nephritis
 - 1mg/kg/day or 2mg/kg/day QOD
 - If no response in 1-2 weeks, biopsy
 - If no response in 4-6 weeks, cyclophosphamide
- 3) Results
 - Reversal of real failure
 - No randomized trials proving steroid efficacy

Chinese Herb Nephropathy

- 1) Chinese herbs for weight reduction
 - Aristolochic acid has been implicated in some, not all cases
 - Some contain NSAIDs
- 2) Only some users affected
 - Women > Men
 - Batch to batch variation
 - Individual variations in metabolism?
- 3) Presentation/course
 - Often rapidly progresive real dysfunction
 - May → irrevesible renal failure even after withdrawal

Chinese Herb Nephropathy

- 4) Diagnosis:
 - Clinical setting
 - Typical tubulointerstitial disease presentation (little proteinuria, no RBC casts)
 - Biopsy: tubular destruction, interstitial inflammation/fibrosis: glomerulosclerosis
- 5) Therapy:
 - Withdraw agents
 - Steroids may be efficacious (1mg/kg x 1 month; followed by taper)

Intratubular Obstruction Associated ARF

- A. Crystalluria associated ARF
 - 1) Ethylene glycol (oxalate crystals)
 - Osmolar gap: measured calculated>10-15
 - Oxalate crystals in urine
 - Severe anion gap metabolic acidosis
 - Encephalopathy (drunk)
 - Pulmonary infiltrates/CHF
 - Confirm by blood level (start treatment with a presumptive diagnosis alcohol/dialysis)

Intratubular Obstruction Associated ARF

- A. Crystalluria associated ARF
 - 2) Acute urate nephropathy
 - Diagnosis: urate > 18mg/dL due to overproduction, not uderexcretion
 - Correct clinical setting
 - Chemotherapy
 - Spontaneous tumr lysis syndrome (HIV-associated Burkitt's)
 - 3) Medication-induced intratubular precipitation
 - Acyclovir (high dose)
 - Methotrexate (high dose)
 - Sulfonamides (rare; more likely to cause AIN)

Intratubular Obstruction Associated ARF

- B. Cast associated ARF
 - Multiple myeloma (light chainproteinuria-associated ARF)
- C. Pathogenesis of tubular "obstruction" associated ARF
 - Intratubular destruction
 - Nephrotoxic proximal tubular necrosis (e.g., ethylene glycol: tumor lysis products, light chains)

Ischemic Acute Renal Failure

- Definition: Onset of ARF in the aftermath of relatively modest hypertensive events
- 2) Morphology
 - Sporadic foci of tubular necrosis (<10% cells)
 - May involve late proximal tubule, or Henle's thick ascending limb
 - Sloughing of viable cells into the tubular lumen
 - Vascular congestion/neutrophil accumulation

Ischemic Acute Renal Failure

- 3) Pathogenesis of filtration failure:
 - Tubular obstruction
 - Backleak
 - Renal vasoconstriction (2° obstruction)
- 4) Course: Reversibility is its hallmark
- 5) Treatment
 - Re-establish hemodynamic stability
 - Early renal vasodilator/diuretic therapy to abort ARF
 - Supportive management/ early or "prophylactic" dialysis

Common Nephrotoxins

- 1) Endogenous Nephrotoxins
 - Myoglobin/hemoglobin
 - Light chains
 - Tumor lysis syndrome
- 2) Exogenous Nephrotoxins
 - Antimicrobial agents
 - Aminoglycosides
 - Amphotericin B
 - Acyclovir
 - Foscarnet
 - ?? Pentamidine; vancomycin

Common Nephrotoxins

- 2) Exogenous Nephrotoxins
 - Chemotherapeutic agents
 - Cisplatin
 - High dose methotrexate
 - Streptozocin
 - Mitomycin C
 - Heavy metals
 - Radiocontrast agents
 - Ethylene Glycol
- 3) Vasoactive ARF
 - ACE inhibitors, NSAIDs, CSA/ FK-506, IL-2, endotoxin

Aminoglycoside Nephrotoxicity

- Incidence: Dependent on duration of treatment (10% and 40% after 7 and 14 days, respectively)
- 2) Clinical manifestations
 - Generally non-oliguric ARF
 - ↓Mg++, ↓K+, glycosuria
- Mechanisms: Proximal tubular active transport→lysosomal overload →phospholipidosis altered phospholipase signallingmechanisms: Proximal tubule necrosis

Aminoglycoside Nephrotoxicity

4) Risk factors:

- Dose and duration
- Volume depletion/

 GFR (prior renal disease; old age)
- Oter nephrotoxins, concomitant ischemia

5) Prevention

- Appropriate dosing for GFR
- Remove reversible factors
- QD dosing if possible
- Stop ASAP
- Monitor trough levels (but may only represent insipient renal failure, rather than prevent it)

Cyclosporine Nephrotoxicity

- 1) Spectrum
 - Acute vasomotor nephropathy
 - Hemolytic Uremic Syndrome
 - Chronic obliterative arteriolopathy/stripped interstitial fibrosis
- 2) Diagnosis
 - Nothing definitive other than clinical setting and response to dose/withdrawal
 - Drug levels only help to support the diagnosis
- 3) Prevention
 - Watch drugs that \(\bar{} \) cyclosporine level
 - Monitor drug trough levels (weak guide)
 - Possible benefit of calcium channel blockers

Management of ARF

- 1) Attempt to prevent ARF:
 - Reverse volume depletion/renal ischemia
 - Stop nephrotoxic agents if possible
- 2) Attempt to abort ARF:
 - Usually only possible with ischemia
 - Vasodilator therapy (dopamine ± ANF)
 - Diuretic therapy

Management of ARF

- 3) Conservative management:
 - Avoid nephrotoxins
 - Fluid/electrolyte balance
 - Treat underlying illness (the prime determinant of recovery)
 - Nutritional support
- 4) Dialysis:
 - Prophylactic treatment (BUN<120)
 - Biocompatible membranes may be preferable
 - Intermittent vs. continuous (no compelling evidence favoring one; individualize treatment)